3.12.8 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \sec ^2(c+d x))}{a+a \sec (c+d x)} \, dx\) [1108]

3.12.8.1 Optimal result
3.12.8.2 Mathematica [C] (warning: unable to verify)
3.12.8.3 Rubi [A] (verified)
3.12.8.4 Maple [A] (verified)
3.12.8.5 Fricas [C] (verification not implemented)
3.12.8.6 Sympy [F(-1)]
3.12.8.7 Maxima [F]
3.12.8.8 Giac [F]
3.12.8.9 Mupad [F(-1)]

3.12.8.1 Optimal result

Integrand size = 35, antiderivative size = 159 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {3 (7 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 a d}-\frac {(5 A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}-\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {(7 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac {(A+C) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \]

output
3/5*(7*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(si 
n(1/2*d*x+1/2*c),2^(1/2))/a/d-1/3*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/c 
os(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+1/5*(7*A+5*C)* 
cos(d*x+c)^(3/2)*sin(d*x+c)/a/d-(A+C)*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*c 
os(d*x+c))-1/3*(5*A+3*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d
 
3.12.8.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.31 (sec) , antiderivative size = 1107, normalized size of antiderivative = 6.96 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx =\text {Too large to display} \]

input
Integrate[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]) 
,x]
 
output
(Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2)*((-4*(5*A 
+ 5*C + 16*A*Cos[c] + 10*C*Cos[c])*Csc[c])/(5*d) - (8*A*Cos[d*x]*Sin[c])/( 
3*d) + (4*A*Cos[2*d*x]*Sin[2*c])/(5*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A 
*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d - (8*A*Cos[c]*Sin[d*x])/(3*d) + (4*A*Co 
s[2*c]*Sin[2*d*x])/(5*d)))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + 
d*x])) + (10*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPF 
Q[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + 
d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt 
[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
- ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2] 
*(a + a*Sec[c + d*x])) + (2*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*H 
ypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]* 
(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan 
[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sq 
rt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[ 
1 + Cot[c]^2]*(a + a*Sec[c + d*x])) - (21*A*Cos[c/2 + (d*x)/2]^2*Cos[c + d 
*x]*Csc[c/2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*((HypergeometricPFQ[{-1/2, -1 
/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c]) 
/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]* 
Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[...
 
3.12.8.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.93, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4602, 3042, 3521, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^{5/2} \left (A+C \sec (c+d x)^2\right )}{a \sec (c+d x)+a}dx\)

\(\Big \downarrow \) 4602

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A \cos ^2(c+d x)+C\right )}{a \cos (c+d x)+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )^2+C\right )}{a \sin \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int -\frac {1}{2} \cos ^{\frac {3}{2}}(c+d x) (a (5 A+3 C)-a (7 A+5 C) \cos (c+d x))dx}{a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \cos ^{\frac {3}{2}}(c+d x) (a (5 A+3 C)-a (7 A+5 C) \cos (c+d x))dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a (5 A+3 C)-a (7 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {a (5 A+3 C) \int \cos ^{\frac {3}{2}}(c+d x)dx-a (7 A+5 C) \int \cos ^{\frac {5}{2}}(c+d x)dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (5 A+3 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx-a (7 A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A+5 C) \left (\frac {3}{5} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A+5 C) \left (\frac {3}{5} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {a (5 A+3 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A+5 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {a (5 A+3 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )-a (7 A+5 C) \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d}\right )}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}\)

input
Int[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x]),x]
 
output
-(((A + C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]))) - (a 
*(5*A + 3*C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]* 
Sin[c + d*x])/(3*d)) - a*(7*A + 5*C)*((6*EllipticE[(c + d*x)/2, 2])/(5*d) 
+ (2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d)))/(2*a^2)
 

3.12.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4602
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[d^( 
m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A*Cos 
[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] 
 && IntegerQ[m]
 
3.12.8.4 Maple [A] (verified)

Time = 9.35 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.74

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (25 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+63 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+45 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+48 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-56 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (-30 A -30 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (23 A +15 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{15 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(277\)

input
int(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x,method=_RETURNV 
ERBOSE)
 
output
-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d* 
x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(25 
*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*A*EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2))+15*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+45*C*EllipticE(cos(1/ 
2*d*x+1/2*c),2^(1/2)))+48*A*sin(1/2*d*x+1/2*c)^8-56*A*sin(1/2*d*x+1/2*c)^6 
+(-30*A-30*C)*sin(1/2*d*x+1/2*c)^4+(23*A+15*C)*sin(1/2*d*x+1/2*c)^2)/a/cos 
(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1 
/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.12.8.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.65 \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\frac {2 \, {\left (6 \, A \cos \left (d x + c\right )^{2} - 4 \, A \cos \left (d x + c\right ) - 25 \, A - 15 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-7 i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-7 i \, A - 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (7 i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (7 i \, A + 5 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorith 
m="fricas")
 
output
1/30*(2*(6*A*cos(d*x + c)^2 - 4*A*cos(d*x + c) - 25*A - 15*C)*sqrt(cos(d*x 
 + c))*sin(d*x + c) - 5*(sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c) + sqrt(2)*( 
-5*I*A - 3*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) 
 - 5*(sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + c) + sqrt(2)*(5*I*A + 3*I*C))*weie 
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(-7*I*A 
 - 5*I*C)*cos(d*x + c) + sqrt(2)*(-7*I*A - 5*I*C))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*(sqrt(2)*(7 
*I*A + 5*I*C)*cos(d*x + c) + sqrt(2)*(7*I*A + 5*I*C))*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d* 
x + c) + a*d)
 
3.12.8.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(5/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c)),x)
 
output
Timed out
 
3.12.8.7 Maxima [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorith 
m="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a), 
x)
 
3.12.8.8 Giac [F]

\[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c)),x, algorith 
m="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a), 
x)
 
3.12.8.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{a+a \sec (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

input
int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)),x)
 
output
int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x)), x)